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A nonlinear Galerkin method for the shallow-water equations is developed, based
on spectral transforms. The scheme is compared to a pseudo-spectral Galerkin
method. Our numerical results indicate that the nonlinear scheme has the potential
advantage of providing similar accuracy at a lower cost than the Galerkin method.
The nonlinear method has also less restrictive stability conditions.c© 2001 Academic Press

1. INTRODUCTION

Nonlinear Galerkin methods were first introduced by Marion and Temam [14] for Navier–
Stokes equations, from a theoretical point of view. The technique relies on the theory
of approximate inertial manifolds [9, 12] (see also [2] for the shallow-water equations)
and employs a decomposition of the solution into its small- and large-scale components.
Applications of the method have been developed, among others, for the Burgers equation
[5, 10] and Navier–Stokes equations [4, 7, 11].

In this article we propose a nonlinear Galerkin method for the shallow-water equa-
tions on two-dimensional domains with periodic boundary conditions (the equations are
formulated as in the model proposed by Lorenz [13], on a f-plane). The shallow-water
equations differ from the incompressible Navier–Stokes equations by the inclusion of the
Coriolis force and by a different mass-conservation equation. In particular, a shallow-
water flow is not divergence-free and the equations can not be projected on the space of
nondivergent velocities, as tipically done for the Navier–Stokes equations. In the scheme
we propose, the velocity components and the geopotential height are expanded as dou-
ble Fourier series, truncated at a certain resolution and the solution space is decomposed
into low and high modes. Some nonlinear interaction terms are neglected and, through
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projection of the equations onto the solution spaces, Galerkin equations for the low and
high modes are derived. The implementation of the scheme is made efficient by the use
of the spectral transform method [8, 15] to compute the projections. These are com-
puted exactly, with no aliasing, by choosing auxiliary grids of appropriate sizes. The
time-discretization is based on a semi-implicit method, leading to CFL stability constraints
guided by the flow velocities (and not by the high phase speeds of the gravity-wave modes
of the shallow-water equations). The stability conditions are less restrictive than for the
Galerkin method. These facts are shown in a linear stability analysis and verified in the
numerical experiments.

A nonlinear Galerkin method for the shallow-water equations has been proposed in [6].
There, two families of basis functions for the velocity field are employed, one composed
by purely rotational and one by purely divergent fields (these basis functions have to be
precomputed). Their approach also differs from ours in the time discretization (they employ
predictor corrector schemes) and in the numerical treatment of the equations, since they
don’t use spectral transforms (which we feel to be fundamental for efficiency).

The appropriate truncation number for a nonlinear Galerkin scheme depends on the
spectral distribution of energy [4, 6]. In any case, if the high modes are resolved only up
to a certain wave number, a corresponding Galerkin method using the same truncation
should provide results at least as good, since it uses more information than the nonlinear
scheme (in which some nonlinear interactions are neglected). The potential advantage of
the nonlinear Galerkin scheme is to provide essentially the same accuracy at a reduced
computational cost. We compared the nonlinear method with a corresponding Galerkin
scheme and obtained numerical evidence of this advantage of the nonlinear method. We
feel the technique attractive for applications and we are investigating its use on global
models on the sphere, aiming at numerical weather prediction.

The paper is structured as follows. It begins with the description of the equations in
Section 2, followed by the presentation of the Galerkin method in Section 3. Section 4 is
dedicated to the nonlinear Galerkin method, and in Section 5 we develop the linear stability
analysis of the Galerkin schemes. Numerical results are presented in Section 6 and the paper
is closed with some conclusions.

2. THE SHALLOW-WATER EQUATIONS

We consider the shallow-water equations in nondimensional form as proposed by Lorenz
[13], on a two-dimensional rectangular domain (the so called f-plane), with periodic bound-
ary conditions. Diffusion and a mass-forcing term are explicitly included. The equations
are given by

∂u

∂t
+ uux + vuy − v + zx − ν01u = 0

∂v

∂t
+ uvx + vvy + u+ zy − ν01v = 0 (1)

∂z

∂t
+ uzx + vzy + (z0+ z)(ux + vy)− κ01z = F,

where the unknows are the two velocity componentsu andv and the geopotential height
z; the domain isÄ = [0, 2π ] × [0, 2π ]. The terms−v and u in the first two equations
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correspond to the nondimensional form of the Coriolis force,ν0 andκ0 are the diffusion
coefficients andF is the (time independent) mass-forcing term.

The shallow-water equations are distinguished from the 2D-incompressible Navier–
Stokes equations by including effects of the Earth’s rotation in the Coriolis terms and
by having a different mass continuity equation. In particular, the flow is not divergence-
free and a Galerkin method for these equations cannot employ a projection on the space
of nondivergent velocities. The shallow-water equations are often employed in models for
ground-water, oceanic, and atmospheric flows.

3. A PSEUDO-SPECTRAL GALERKIN METHOD FOR THE EQUATIONS

The shallow-water equations admit solutions evolving in different time scales. They
present slower modes, the Rossby waves, and the much faster evolving gravity waves.
While one is normally interested in following the large-scale motion of the Rossby waves,
the presence of the gravity waves, in spite of the fact that they usually carry little energy,
poses severe stability restrictions for explicit schemes, because of their high-phase speed.
Therefore, it is important to adopt some degree of implicitness in the numerical schemes
for these equations, in order to attenuate the CFL stability constraints.

We propose here a semi-implicit pseudo-spectral Galerkin method for system (1). The
prognostic fieldsu, v, andz will be expanded as double Fourier series,uN(x, y, t)

vN(x, y, t)

zN(x, y, t)

 = ∑
k,l∈IN

 ûkl(t)

v̂kl(t)

ẑkl(t)

ei (kx+ly), (2)

where

IN =
{
(k, l ) : −N

2
+ 1≤ k, l ≤ N

2

}
. (3)

The truncated expansion can be seen as the result of theprojection PN from the spaceHper of
functions given by double Fourier series ontoUN = span{ei (kx+ly) : (k, l ) ∈ IN}. We first
consider a second-order semi-implicit time discretization of (1), where the terms giving rise
to the fast gravity waves (such as the geopotential gradient) will be treated implicitly, while
the nonlinear terms will be discretized explicitly by a leap-frog type scheme. The complete
time discretization is given by

un+1−1tvn+1+1tzn+1
x − ν01t1un+1 = r n−1

1a + r n
1b

vn+1+1tun+1+1tzn+1
y − ν01t1vn+1 = r n−1

2a + r n
2b (4)

zn+1+ z01t
(
un+1

x + vn+1
y

)− κ01t1zn+1 = r n−1
3a + r n

3b,

where a superscriptn refers to the variables at timetn = n1t , and

r n−1
1a = un−1+1tvn−1−1tzn−1

x + ν01t1un−1

r n−1
2a = vn−1−1tun−1−1tzn−1

y + ν01t1vn−1 (5)

r n−1
3a = zn−1−1tz0

(
un−1

x + vn−1
y

)+ κ01t1zn−1
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r n
1b = −21t

(
unun

x + vnun
y

)
r n

2b = −21t
(
unvn

x + vnvn
y

)
(6)

r n
3b = −21t ((znun)x +

(
znvn)y + F).

The Galerkin scheme is obtained through the projection of the time discretizated equations
onUN :

un+1
N −1tvn+1

N +1tzn+1
N,x − ν01t1un+1

N = PN
(
r n−1

1a + r n
1b

)
vn+1

N +1tun+1
N +1tzn+1

N,y − ν01t1vn+1
N = PN

(
r n−1

2a + r n
2b

)
(7)

zn+1
N + z01t

(
un+1

N,x + vn+1
N,y

)− κ01t1zn+1
N = PN

(
r n−1

3a + r n
3b

)
.

Assuming for the moment that the projections in the right-hand side of (7) have been
computed, this linear system can be decomposed for each spectral component(k, l ) ∈ IN

as 
1+ ν0γkl −1t ik1t

1t 1+ ν0γkl il1t

ikz01t ilz01t 1+ κ0γkl

 ·


ûn+1
kl

v̂n+1
kl

ẑn+1
kl

 =


r̂ n−1
1a,kl + r̂ n

1b,kl

r̂ n−1
2a,kl + r̂ n

2b,kl

r̂ n−1
3a,kl + r̂ n

3b,kl

, (8)

where γkl = 1tλkl and λkl = k2+ l 2 is the corresponding eigenvalue of minus the
Laplacian.

The system (8) can be written as a system for(ûn+1
kl , v̂n+1

kl ) (depending on thêzn+1
kl

variable)[
(1+ ν0γkl) −1t

1t (1+ ν0γkl)

]
·
[

ûn+1
kl

v̂n+1
kl

]
=
[

r̂ n−1
1a,kl + r̂ n

1b,kl − ik1t ẑn+1
kl

r̂ n−1
2a,kl + r̂ n

2b,kl − il1t ẑn+1
kl

]

whose solution is given by[
ûn+1

kl

v̂n+1
kl

]
= 1

θkl

[
ŝ1,kl − i(k1t (1+ ν0γkl)+ l12t)ẑn+1

kl

ŝ2,kl + i(k12t − l1t (1+ ν0γkl))ẑ
n+1
kl

]
, (9)

where

i = √−1

θkl = (1+ ν0γkl)
2+12t

ŝ1,kl = (1+ ν0γkl)
(
r̂ n−1

1a,kl + r̂ n
1b,kl

)+1t
(
r̂ n−1

2a,kl + r̂ n
2b,kl

)
(10)

ŝ2,kl = −1t
(
r̂ n−1

1a,kl + r̂ n
1b,kl

)+ (1+ ν0γkl)
(
r̂ n−1

2a,kl + r̂ n
2b,kl

)
.

The combination of the two equations in (9) (equivalent to building the divergence of the
new velocity field) provides the expression

i
(
kûn+1

kl + l v̂n+1
kl

) = (i(kŝ1,kl + l ŝ2,kl)+1t (1+ ν0γkl)λkl ẑ
n+1
kl

)
θkl

, (11)
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which when employed in the third equation of (8) leads to

ẑn+1
kl =

1

αkl

(
r̂ n−1

3a,kl + r̂ n
3b,kl − i

z01t

θkl
(kŝ1,kl + l ŝ2,kl)

)
(12)

with

αkl = 1+ z01tγkl

θkl
(1+ ν0γkl)+ κ0γkl . (13)

Altogether, we solve (8) by first deriving the value ofẑn+1
kl from (12) and then using it

in (9).
For the solution of (7) it remains to explain how to compute the projections of the right-

hand side. Since they involve the nonlinear terms (including products of the variables), they
cannot be computed directly from the spectral coefficients in a efficient way. Instead, we
employ the so-called spectral transform method [8, 15], using an auxiliary grid

JN =
{
(xr , ys) : xr = 2π(r − 1)

N
, ys= 2π(s− 1)

N
, r, s= 1, . . . , N

}
, (14)

where we can evaluate the function and derivative values involved in the right-hand side
of (7) (through Fourier transforms). On the grid, the products can be trivially formed and
added. In order to project the right-hand side of (7) ontoUN a Fourier transform of the
grid values is employed, leading to the spectral coeffcients. However, the product of two
functions inUN (such asu andux) lies in U2N , and if it is evaluated on the gridJN and
transformed back to get the spectral representation, the high modes (N + 1 to 2N) will be
aliased with the lower modes. This spurious transfer of energy from high to low modes is a
potential source of (nonlinear) instability in the scheme. If we use the gridJ2N instead, we
get the correct coefficients of the product term inU2N and therefore the correct projection
ontoUN . But for this purpose, it is sufficient to employ gridJ3N/2 where aliasing occurs
only in the frequency range fromN + 1 to 3N/2 and an alias free projection ontoUN will
be computed (see [1]). This is the smallest grid to guarantee an alias-free computation and
will be chosen in efficient computations. In summary, a complete time step will consist of
the computation of the right-hand side of (7) on gridJ3N/2 amounting to Fourier transforms
of u, v, z and their gradients, in a total of 9 fields transformed. The products are then
computed on the grid, and the right-hand sides of (7) are transformed back. The system can
then be solved and the time step completed. The computational costs are dominated by the
12 transforms per time step, on a grid of size 3N/2× 3N/2. Therefore, the computational
costs will be of the orderϑ(27N2 log2(3N/2)).

4. THE NONLINEAR GALERKIN METHOD

Nonlinear Galerkin methods are motivated by the theory of Approximate Inertial Mani-
folds (e.g. [9, 14, 12]). In principle, they can be used for equations of the form

dU

dt
+ AU + G(U ) = f, (15)

whereA is a positive self-adjoint linear operator with compact inverse andG includes the
nonlinearities. In our problem,A is the (diagonal) diffusion operator,U = (u, v, z) and the
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eigenfunctions ofA (which form a complete set) are the Fourier modes. ForPN/2 defined
as the projection (ofHper—the solution space) onto the space of low modesUN/2 and
QN = I − PN/2 (I is the identity operator) Eq. (15) is equivalent to the following system,

dp

dt
+ Ap+ PN/2G(p+ q) = PN/2 f (16)

dq

dt
+ Aq+ QNG(p+ q) = QN f, (17)

wherep = PN/2U andq = QNU . Neglectingq (the projection onto the high modes) leads
to the usual Galerkin scheme:

dp

dt
+ Ap+ PN/2G(p) = PN/2 f. (18)

In the theory of inertial manifolds,q is also taken into account, being approximated as
a function of the low modesq = 8(p), such that8(p) = A−1(QN f − QNG(p) is an
approximate inertial solution of the equation for the high modes (17). The graphic of the
equationq = 8(p) is called the approximate inertial manifold. This diagnostic value of the
high modes is employed in the formulation of the nonlinear Galerkin scheme:

dp

dt
+ Ap+ PN/2G(p+8(p)) = PN/2 f. (19)

For a practical and efficient method, some simplifications are necessary. First, instead of
defining QN = I − PN/2 we need to restrict it to a projection onto a finite dimensional
subspace. We takeQN = PN − PN/2. The second simplification we adopt is in the evalu-
ation ofG(p+8(p)) in which we will not consider the interaction between high modes.
Introducing the notation

uN = uL + uH , (uL = PN/2(u), uH = QN(u))

vN = vL + vH , (vL = PN/2(v), vH = QN(v))
(20)

zN = zL + zH , (zL = PN/2(z), zH = QN(z))

FN = FL + FH , (FL = PN/2F, FH = QN F),

we obtain the following systems, which define our nonlinear Galerkin method. We have

∂uL

∂t
− vL + ∂zL

∂x
− ν01uL = s1

∂vL

∂t
+ uL + ∂zL

∂y
− ν01vL = s2 (21)

∂zL

∂t
+ z0

(
∂uL

∂x
+ ∂vL

∂y

)
− κ01zL = s3

−vH + ∂zH

∂x
− ν01uH = s4

uH + ∂zH

∂y
− ν01vH = s5 (22)

z0

(
∂uH

∂x
+ ∂vH

∂y

)
− κ01zH = s6,
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where the right-hand sides are given by

s1 = PN/2(−uL(uL + uH )x − uH uL ,x − vL(uL + uH )y − vH uL ,y)

s2 = PN/2(−uL(vL + vH )x − uHvL ,x − vL(vL + vH )y − vHvL ,y) (23)

s3 = PN/2(F − (zL(uL + uH ))x − (zH uL)x − (zL(vL + vH ))y − (zHvL)y)

s4 = QN(−uLuL ,x − vLuL ,y)
(24)

s5 = QN(−uLvL ,x − vLvL ,y)

s6 = QN(F − (zLuL)x − (zLvL)y).

One could also keep the temporal derivatives in the equations for the high modes (22), using
it in prognostic form. We choose the diagnostic form (22).

This nonlinear scheme is expected to lead to a better precision than the corresponding
Galerkin method onUN/2, since it includes the nonlinear interactions with the diagnostic
values of the high modes. On the other hand, because of the definition ofQN as the projection
ontoUN , complementary toPN/2, the method should not be more precise than the Galerkin
scheme onUN . The atractivity of the idea will be to achieve almost the same precision of
the Galerkin scheme onUN , with lower computational costs.

The numerical discretization of the nonlinear Galerkin method will follow the same lines
of the Galerkin scheme. We employ a semi-implicit temporal discretization on a pseudo-
spectral method, applying spectral transforms to compute nonlinear products. The projec-
tions on the high and low modes spaces will be computed exactly in an alias free scheme.

We have

un+1
L −1tvn+1

L +1tzn+1
L ,x − ν01t1un+1

L = Sn−1
1 + 21tsn,n+1

1

vn+1
L +1tun+1

L +1tzn+1
L ,y − ν01t1vn+1

L = Sn−1
2 + 21tsn,n+1

2 (25)

zn+1
L + z01t

(
un+1

L ,x + vn+1
L ,y

)− κ01t1zn+1
L = Sn−1

3 + 21tsn,n+1
3

−vn+1
H + zn+1

H,x − ν01un+1
H = sn

4 = QN
(−un

Lun
L ,x − vn

Lun
L ,y

)
un+1

H + zn+1
H,y − ν01v

n+1
H = sn

5 = QN
(−un

Lv
n
L ,x − vn

Lv
n
L ,y

)
(26)

z0
(
un+1

H,x + vn+1
H,y

)− κ01zn+1
H = sn

6 = QN
(
F − (zn

Lun
L

)
x −

(
zn

Lv
n
L

)
y
)
,

with superscripts referring to time instants. The linear terms at timetn−1 in the equation for
low modes are given by

Sn−1
1 = un−1

L +1tvn−1
L −1tzn−1

L ,x + ν01t1un−1
L

Sn−1
2 = vn−1

L −1tun−1
L −1tzn−1

L ,y + ν01t1vn−1
L (27)

Sn−1
3 = zn−1

L −1tz0
(
un−1

L ,x + vn−1
L ,y

)+ κ01t1zn−1
L .

The nonlinear terms are discretized as

sn,n+1
1 = PN/2

(−un
L

(
un

L + un+1
H

)
x
− un+1

H un
L ,x − vn

L

(
un

L + un+1
H

)
y
− vn+1

H un
L ,y

)
sn,n+1

2 = PN/2
(−un

L

(
vn

L + vn+1
H

)
x
− un+1

H vn
L ,x − vn

L

(
vn

L + vn+1
H

)
y
− vn+1

H vn
L ,y

)
(28)

sn,n+1
3 = PN/2

(
F − (zn

L

(
un

L + un+1
H

))
x −
(
zn+1

H un
L

)
x −

(
zn

L

(
vn

L + vn+1
H

))
y −

(
zn+1

H vn
L

)
y
)
.
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The equations are transformed into equations for the spectral coefficients of low modes
((k, l ) ∈ UN/2),

1+ ν0γkl −1t ik1t

1t 1+ ν0γkl il1t

ikz01t ilz01t 1+ κ0γkl

 ·


ûn+1
L ,kl

v̂n+1
L ,kl

ẑn+1
L ,kl

 =


Ŝn−1
1,kl + 21t ŝn,n+1

1,kl

Ŝn−1
2,kl + 21t ŝn,n+1

2,kl

Ŝn−1
3,kl + 21t ŝn,n+1

3,kl

, (29)

and for the high modes ((k, l ) ∈ WN),
ν0λkl −1 il

1 ν0λkl ik

ilz0 ikz0 κ0λkl

 ·


ûn+1
H,kl

v̂n+1
H,kl

ẑn+1
H,kl

 =


ŝn
4,kl

ŝn
5,kl

ŝn
6,kl

. (30)

Assuming the right-hand side of (30) to be known, it can be solved as system (8) leading to
the new values of̂uH , v̂H , andẑH . These high modes are used in the right-hand side of (29),
which can then be solved as (8) for each (k, l ) ∈ UN/2. The evaluation of the right-hand
side of the systems for the low and high modes involves nonlinear terms. For this purpose,
we employ spectral transforms, choosing appropriate auxiliary grids to guarantee alias-free
results and an efficient scheme.

We need to compute products of low modes with either low or high modes, and then
project the results ontoUN/2 or WN . For functionsφ, θ in UN/2 the productφθ lies inUN .
With an N × N grid, a two-dimensional FFT will provide the correct values of all spectral
coefficients ofφθ , and therefore the two projectionsPN/2(φθ) and QN(φθ) are obtained
alias free. Forφ in UN/2 and θ in WN the product lies inU3N/2. With an N × N grid,
only the modes with wave number up toN/2 will be obtained alias free. But that’s all we
need to havePN/2(φθ) computed correctly. Therefore, anN × N grid will be sufficient for
obtaining all the right-hand sides with no aliasing.

In summary, a time step of the method will proceed as follows, assumingûn−1
L ,kl , v̂

n−1
L ,kl , ẑ

n−1
L ,kl

for (k, l ) ∈ IN/2 and the values ofun
L , u

n
L ,x, u

n
L ,y, v

n
L , v

n
L ,x, v

n
L ,y, z

n
L , z

n
L ,x, z

n
L ,y, on aN × N

grid to be known.

(a) Computation of high modes attn+1:
(a1) Computesn

4 , sn
5 , sn

6 on the grid and apply Fourier transforms to getŝn
4,kl , ŝn

5,kl ,
ŝn

6,kl for (k, l ) ∈ IN .
(a2) Solve forûn+1

H , v̂n+1
H , ẑn+1

H ∈ WN .
(a3) Compute the values ofun+1

H , un+1
H,x , u

n+1
H,y , v

n+1
H , vn+1

H,x , v
n+1
H,y , z

n+1
H , zn+1

H,x , z
n+1
H,y , on

the N × N grid.
(b) Computation of the low modes attn+1:

(b1) Using the values computed in step (a3) evaluatesn,n+1
i , i = 1, 2, 3 on theN ×

N grid and use FFTs to get the corresponding spectral coefficients of their projection onto
UN/2.

(b2) Complete the right-hand side with the linear termsSn−1
i , i = 1, 2, 3 and solve

the equations for̂un+1
L , v̂n+1

L , andẑn+1
L in UN/2.

(b3) Generate the values ofun+1
L , un+1

L ,x , u
n+1
L ,y , v

n+1
L , vn+1

L ,x , v
n+1
L ,y , z

n+1
L , zn+1

L ,x , z
n+1
L ,y , on

the N × N grid, which shall be used in the following time step.

Altogether, 24 two-dimensional FFT’s onN× N grids will be carried out, 12 when
computing the high modes and 12 for the low modes. The total computational work will be of
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the order ofϑ(24N2 log2(N
2)). This work compares favorably to theϑ(27N2 log2(3N2/2))

of the linear Galerkin method (onUN), which needed a 3N/2× 3N/2 grid for alias-free
results.

We also consider the possibility of freezing the high modes coefficients for several time
steps. In this case, the total computational cost consists essentially of the costs for the low
modes equation, being reduced almost by a factor of two.

5. LINEAR STABILITY ANALYSIS

We present a linear stability analysis for the pseudo-spectral linear Galerkin method
described in Section 2. The discrete equations are given by

EVn+1
N − EVn−1

N

21t
+ PN

(( EVn
N · ∇

) EVn
N

)+ Ek× EVn+1
N + EVn−1

N

2

+∇
(

zn+1
N + zn−1

N

2

)
− ν01

( EVn+1
N + EVn−1

N

2

)
= 0 (31)

zn+1
N −zn−1

N

21t
+z0∇ ·

( EVn+1
N + EVn−1

N

2

)
+ PN

(∇ ·(zn
N
EVn

N

))−κ01

(
zn+1

N +zn−1
N

2

)
= FN,

with EV N = (uN, vN) ∈ UN ×UN andzN ∈ UN .

Linearizing system (31) around a state with constant velocityEU leads to

EVn+1
N − EVn−1

N

21t
+ (( EU · ∇) EVn

N

)+ Ek× EVn+1
N + EVn−1

N

2

+∇
(

zn+1
N + zn−1

N

2

)
− ν01

( EVn+1
N + EVn−1

N

2

)
= 0 (32)

zn+1
N − zn−1

N

21t
+ z0∇ ·

( EVn+1
N + EVn−1

N

2

)
+ EU · ∇zn

N − κ01

(
zn+1

N + zn−1
N

2

)
= FN .

We build the scalar product of the first equation in (32) withz0( EVn+1
N + EVn−1

N ) and add it
to the scalar product of the second equation with (zn+1

N + zn−1
N ). This, after simplifying the

terms originating from the geopotential and of the divergence, in presence of the periodic
boundary conditions, leads to the expression

z0

∣∣ EVn+1
N

∣∣2+ ∣∣zn+1
N

∣∣2+ z0ν01t
∥∥ EVn+1

N + EVn−1
N

∥∥2+ κ01t
∥∥zn+1

N + zn−1
N

∥∥2

= z0

∣∣ EVn−1
N

∣∣2+ ∣∣zn−1
N

∣∣2− 2z01t
〈 EU · ∇ EVn

N,
EVn+1

N + EVn−1
N

〉
− 21t

〈 EU · ∇zn
N, z

n+1
N + zn−1

N

〉+ 21t
〈
FN, z

n+1
N + zn−1

N

〉
,

where we haveEV = (u, v), 〈u, v〉= ∫
Ä

uv, | EV |2= |u|2+ |v|2, |u|2=〈u, u〉,‖ EV‖2=‖u‖2+
‖v‖2, ‖Eu‖2 = |ux|2+ |uy|2.
We addz0| EVn

N |2+ |zn
N |2 to both sides of last equation, in order to get

Gn+1+ z0ν01t
∥∥ EVn+1

N + EVn−1
N

∥∥2+ κ01t
∥∥zn+1

N + zn−1
N

∥∥2

=Gn + N LT + 21t
〈
FN, z

n+1
N + zn−1

N

〉
(33)
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where

Gn = z0

∣∣ EVn
N

∣∣2+ z0

∣∣ EVn−1
N

∣∣2+ ∣∣zn
N

∣∣2+ ∣∣zn−1
N

∣∣2, (34)

N LT = −2z01t
〈 EU . ∇ EVn

N,
EVn+1

N + EVn−1
N

〉− 21t
〈 EU . ∇zn

N, z
n+1
N + zn−1

N

〉
. (35)

For estimating the term with the mass forcing, we first observe that the integration of (32)
on the whole domain leads to

∫
Ä

zn+1
N − zn−1

N = 21t
∫
Ä

FN . This provides a limitation of
the constant part of the solution (denoted byz̄n

N) of the type∣∣z̄n
N

∣∣ ≤ Cn1t |FN |,

whereC is a positive constant. We now splitzn
N = z̄n

N + z̃n
N , wherez̃n

N has zero mean value.
We then have

21t
〈
FN, z

n+1
N + zn−1

N

〉 = 21t
(〈

FN, z̄
n+1
N + z̄n−1

N

〉+ 〈FN, z̃
n+1
N + z̃n−1

N

〉)
≤ 21t |FN |

(∣∣z̃n+1
N + z̃n−1

N

∣∣+ ∣∣z̄n+1
N + z̄n−1

N

∣∣)
≤ 21t |FN |

(
2Cn1t |FN | + C1

∥∥zn+1
N + zn−1

N

∥∥)
≤ 1

2
κ01t

∥∥zn+1
N + zn−1

N

∥∥2+ 21t

(
C2

1

κ0
+ 2Cn1t

)
|FN |2. (36)

In the last estimates we have used a Poincar´e inequality (C1 is a positive constant) and
the algebraic inequality(ab≤ a2/4+ b2). We also observe, using the periodic boundary
conditions, that

−2z01t
〈 EU . ∇ EVn

N,
EVn−1

N

〉 = 2z01t
〈 EU . ∇ EVn−1

N , EVn
N

〉
.

Similarly,−21t〈 EU . ∇zn
N, z

n−1
N 〉 = 21t〈 EU . ∇zn−1

N , zn
N〉. Substituting in (35) we have

N LT = −2z01t
〈 EU .∇ EVn

N,
EVn+1

N

〉− 21t
〈 EU .∇zn

N, z
n+1
N

〉
+ 2z01t

〈 EU .∇ EVn−1
N , EVn

N

〉+ 21t
〈 EU .∇zn−1

N , zn
N

〉
= Hn+1− Hn,

with

Hn = −2z01t
〈 EU . 1 EVn−1

N , EVn
N

〉− 21t
〈 EU . 1zn−1

N , zn
N

〉
.

Using the last expressions in (33) we obtain

G j+1 ≤ G j+1+ z0ν01t
∥∥ EV j+1

N + EV j−1
N

∥∥2+ 1

2
κ01t

∥∥zj+1
N + zj−1

N

∥∥2

≤ G j + H j+1− H j + 21t

(
C2

1

κ0
+ 2Cn1t

)
|FN |2. (37)

Adding up for j from 1 ton results in

Gn+1 ≤ G1+ Hn+1− H1+ 2

(
C2

1

κ0
+ 2Cn1t

)
n1t |FN |2. (38)
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We can now limit

|H j | ≤ 2z01t | EU |∞
∥∥ EV j−1

N

∥∥ ∣∣ EV j
N

∣∣+ 21t | EU |∞
∥∥zj−1

N

∥∥ ∣∣zj
N

∣∣
≤ 2z0

√
2N1t | EU |∞

∣∣ EV j−1
N

∣∣ ∣∣ EV j
N

∣∣+ 2
√

2N1t | EU |∞
∣∣zj−1

N

∣∣ ∣∣zj
N

∣∣
≤
√

2N1t | EU |∞
(
z0

∣∣ EV j−1
N

∣∣2+ z0

∣∣ EV j
N

∣∣2+ ∣∣zj−1
N

∣∣2+ ∣∣zj
N

∣∣2)
≤ (
√

2N1t | EU |∞)G j .

It then follows from (38) that for anyT > 0 fixed andn1t ≤ T :

(1−
√

2N1t | EU |∞)Gn+1 ≤ (1+
√

2N1t | EU |∞)G1+ 2

(
C2

1

κ0
+ 2CT

)
T |FN |2.

So, if1t < 1√
2N| EU |∞ we have

Gn+1 ≤ 1+√2N1t | EU |∞
1−√2N1t | EU |∞

G1+ 2
(
κ−1

0 C2
1 + 2CT

)
T

1−√2N1t | EU |∞
|FN |2. (39)

We have therefore proved:

PROPOSITION. If 1t obeys the CFL condition1t < 1√
2N| EU |∞ , then Gn≤C2G1+

C3T |FN |2, where C2 and C3 are constants obtained from the inequality(39), T a fixed
time, and Gn is given by(34). It follows that the scheme is linearly stable.

Observation. The same proof above applies for the nonlinear galerkin method (with
projectionsPN/2 andQN). It will lead to the stability condition1t < 1√

2 N
2 | EU |∞

, indicating

that the CFL condition for the nonlinear galerkin method is given by the equation for the
low modes. This agrees with the fact that the equation for the high modes is employed as a
diagnostic equation.

An analysis in which the linearization is done around a spatially variable basic state and
the interaction between low and high modes is present in the resulting system is presented
in [2].

6. NUMERICAL RESULTS

We present in this section numerical results obtained with the nonlinear Galerkin method,
which are compared with results from the pseudo-spectral Galerkin method described in
section (4).

We first consider a smooth solution with initial state given by

u = 1

100ν0z0
siny

v = 1

100z0
siny (40)

z = 1

100ν0z0
cosy.

This initial state is nearly stationary for a forcing termF = cosy/100. We adopt the values
z0 = 8, ν0 = κ0 = 1/48 in the nondimensional model and integrate the equations with a
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forcing term of the order of 1/10. (Our choice of parameters correspond, on a domain
with typical lenghtL = 1080 Km, to heights of the order of 8 km and Coriolis factor
f −1 = 10800 s.)

We first tested the method in different situations, also using the high-mode equations in
prognostic form. This brings no advantage over the diagnostic form (22) described in the
text. We have experimented with the possibility of freezing the high modes for several time
steps, with different test cases, resolutions, and time steps. The number of steps the high
modes can be kept unchanged (without significant loss in precision) varied from around 10 to
more than 50. The results indicate that the high modes don’t need to be updated as frequently
as the low modes (this is in accordance with results of [4] for the Navier–Stokes equations).

In Fig. 1 we display results obtained with the nonlinear method (NLG) (with the high
modes frozen for every 30 time steps) and with the pseudo-spectral Galerkin (GL) method
at several resolutions. In these tests, a small time step (1t = 9 min.) was employed, in
order to keep the time truncation errors very small. In this way we can observe better the
differences in spatial resolution of both methods. The results, after 200 time steps, show that
the nonlinear method at a resolutionN, has an accuracy close to that of the corresponding
Galerkin method at same truncation and better than the accuracy of the Galerkin method at
resolutionN/2, as expected. The lower cost of the nonlinear Galerkin method (compared
to the Galerkin method at same truncation) makes the scheme interesting. In Fig. 1 the
geopotential field is shown forN = 8, 16, and 32. In each graphic, we compare the linear
Galerkin method (GL) at truncationN either to the same method at truncationN/2 or to
the nonlinear method (NLG) at truncationN.

The relative computational efficiency of the schemes can be seen in Fig. 2. ForN from
16 to 128, we display the CPU times for the whole integration (200 time steps) with the
Linear Galerkin (LG), nonlinear Galerkin (NLG), and nonlinear Galerkin with high modes
frozen (NLGF). We observe that the nonlinear method (NLG) is faster than LG (for the same
resolution) by around 12%, and when the high modes are frozen it is almost two times faster.

We also consider less smooth solutions by taking an extra forcing term of the form
F1(x, y) = δr (x)δr (y) where

δr =
{

r
4(1.+ cos(rs+ π)), |s| ≤ π(1+ r )

0, otherwise;

(see Fig. 3). This forcing approximates a local (dirac type) mass source at the center of
the domain. The results for the geopotential after 200 time steps (departing from the same
initial state as before) are displayed in Fig. 4. We present results for the linear Galerkin
method and for the nonlinear method with frozen high modes for every 30 steps, forN = 8,
16, 32, and 64. We can observe the same qualitative behavior of the previous example also
in this case, in which at least 32 modes are necessary to provide a good resolution of the
solution. Again, the nonlinear method at truncationN leads to an intermediate accuracy,
between the ones of the Galerkin method at resolutionsN/2 andN, closer to the latter (at
lower cost).

We carried out several stability tests, confirming the CFL-type condition for stability
(dependent on the maximal flow velocities). The numerical experiments also confirmed
that the nonlinear method at truncationN is as stable as the Galerkin method at resolution
N/2 (being able to employ time steps two times larger than the Galerkin method at truncation
N). This is a potential advantage of the nonlinear method.



604 BARROS AND CÁRDENAS

FIG. 1. Display of the geopotential field after 200 time steps for several resolutions. In the left (plots a, c, and
e) we compare the results of the (linear) Galerkin method with truncationsN = 8, 16, and 32 to the results of the
same method at half resolution (N = 4, 8, and 16 ) respectively. In the right (plots b, d, and f) the Galerkin (GL)
method (with truncationsN = 8, 16, and 32) is compared to the non-linear method (NLG) at same resolution
(truncationsN = 8, 16, and 32, respectively).
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FIG. 2. CPU time.

7. A FEW REMARKS ON THE APPLICABILITY OF THE METHOD

The use of the shallow-water equations on af -plane with periodic conditions and constant
coefficients leads to some simplifications, which are not necessarily present in more realistic
applications. We would like, therefore, to make some remarks pointing out how to handle
more general situations. First, if the Coriolis factor is variable (as in the case of aβ-plane
or global models), its implicit treatment as done in this paper would not be feasible. The
Coriolis terms should then be discretized explicitly (at timetn). The productsf u and f v
would be evaluated on the grid and contribute to the right-hand sides of the equations.
This modification has no significant impact either on the accuracy or on the stability of the
method, and could have been used in the present model.

FIG. 3. Shallow water equations: forcingF1.
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FIG. 4. Display of the geopotential field after 200 time steps with a local mass source. In the left (plots a, c,
and e) we compare the results of the (linear) Galerkin method with truncationsN = 16, 32, and 64 to the results
of the same method at half resolution (N = 8, 16, and 32 ), respectively. In the right (plots b, d, and f) the Galerkin
(LG) method (with truncationsN = 16, 32, and 64 ) is compared to the nonlinear method (NLG) at same resolution
(truncationsN = 16, 32, and 64, respectively).
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The presence of variable horizontal diffusion coefficients would also prevent the implicit
treatment of the Laplacian terms, in a spectral framework as employed in this paper. The
solution for this, is to discretize the diffusion terms explicitly (at timetn−1, as in an Eulerian
method with time step 21t). This change, however, will change the stability properties of the
schemes (both of the Galerkin and of the nonlinear Galerkin method). An explicit treatment
of diffusion is usual in oceanic applications of shallow water flow (see e.g. [3]) and the
stability conditions seem to be acceptable from a pratical point of view. In global weather
forecasting models, however, it is a common practice to employ constant horizontal diffusion
coefficients (see e.g. [16]), and in this case, the related terms can be treated implicitly as
described here. Another aspect is the possible presence of a variable orography, instead of the
flat bottom considered in this paper. The extra terms, involving the gradient of the orography,
could be evaluated explicitly (at timetn) on the grid, with the linear part of the mass
divergence term still handled implicitly as in the present model. With these modifications,
the scheme should present similar numerical properties, concerning accuracy and stability.

The application of the nonlinear Galerkin method to a global spectral shallow-water
model, involving the ideas discussed in this section, is a subject of our ongoing research.

8. CONCLUSIONS

We present a nonlinear (pseudo-spectral) Galerkin method for the shallow-water equa-
tions on bidimensional periodic domains, and compare it to a pseudo-spectral Galerkin
method. Both schemes employ a semi-implicit second-order accurate time discretization,
and have a CFL stability restriction governed by the flow velocities, and not by the fast
gravity wave modes of the shallow-water equations. This stability condition is more re-
strictive (by a factor two) for the Galerkin method than for the nonlinear scheme. This fact
is verified numerically and supported by a linear stability analysis, in which the stability
criteria are derived. Both schemes are derived to be free of aliasing resulting from nonlinear
interaction. With the linear Galerkin method, employing double Fourier expansions with
N modes in each direction, this is achieved at the cost of using a 3N/2× 3N/2 auxiliary
grid in the spectral transforms. In the nonlinear Galerkin method we developed, aN × N
grid is sufficient for alias-free computations. In this way, every time step of the nonlinear
Galerkin method is faster than the corresponding step of the linear Galerkin method at same
resolution. In the nonlinear method we can also freeze the high modes for some time steps,
therefore reducing the computational work by a significant amount. Our numerical results
indicate that the nonlinear Galerkin method, even with the high modes frozen for many
steps, still achieves an accuracy comparable to that of the linear scheme at same resolution
(at a considerable lower cost). This fact makes the approach potentially interesting for appli-
cations. We are currently investigating its use on spectral schemes for global shallow-water
models, with atmospheric applications in view.
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3. V. Casulli and E. Cattani, Stability, accuracy and efficiency of a semi-implicit method for three-dimensional
shallow water flow, Comput. Math. Appl.27(4), 99 (1994).

4. A. Debussche, T. Dubois, and R. Temam (1993). The nonlinear Galerkin method: A multi-scale method
applied to the simulation of homogeneos turbulent flows, Icase Report No. 93-93.

5. L., Dettori, D. Gottlieb, and R. Temam, A nonlinear Galerkin method: The two-level Fourier-collocation case,
J. Sci. Comput. 10(4), 371 (1995).

6. B. di Martino and P. Orenga, R´esolution des ´equations de shallow water par la m´ethode de Galerkin non
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